
GHC LANGUAGE EXTENSIONSGHC LANGUAGE EXTENSIONS
Andrew McMiddlin

2019-05-15

type-class-extensions.lhs:3:3: error:

 • Too many parameters for class ‘Foo’

 (Enable MultiParamTypeClasses to allow multi-parameter classes)

 • In the class declaration for ‘Foo’

 |

3 | > class Foo a b where

 | ^^^^^^^^^^^^^^^^^^^...

type-class-extensions.lhs:3:3: error:

 • Too many parameters for class ‘Foo’

 (Enable MultiParamTypeClasses to allow multi-parameter classes)

 • In the class declaration for ‘Foo’

 |

3 | > class Foo a b where

 | ^^^^^^^^^^^^^^^^^^^...

LANGUAGE EXTENSIONS 101LANGUAGE EXTENSIONS 101

HASKELL 2010HASKELL 2010
Haskell 2010 is defined in the .Haskell 2010 Language Report

https://www.haskell.org/onlinereport/haskell2010/haskell.html

WHAT’S NOT IN HASKELL 2010?WHAT’S NOT IN HASKELL 2010?

WHAT’S NOT IN HASKELL 2010?WHAT’S NOT IN HASKELL 2010?
Type classes with more than one parameter.

WHAT’S NOT IN HASKELL 2010?WHAT’S NOT IN HASKELL 2010?
Type classes with more than one parameter.
String literals for anything other than [Char]

WHAT’S NOT IN HASKELL 2010?WHAT’S NOT IN HASKELL 2010?
Type classes with more than one parameter.
String literals for anything other than [Char]
Generalised Algebraic Data Types (GADTs)

LANGUAGE EXTENSIONSLANGUAGE EXTENSIONS

LANGUAGE EXTENSIONSLANGUAGE EXTENSIONS
 covers the LANGUAGE pragma, which is used for extensions.Section 12.3

https://www.haskell.org/onlinereport/haskell2010/haskellch12.html#x19-19100012.3

ENABLING EXTENSIONS IN GHCENABLING EXTENSIONS IN GHC

{-# LANGUAGE OverloadedStrings #-}

{-# LANGUAGE GADTs, ScopedTypeVariables #-}

default-extensions: OverloadedStrings

 , GADTs

 , ScopedTypeVariables

ghc -XOverloadedStrings Foo.hs

$ ghci

λ :set -XOverloadedStrings

SUGARSUGAR

OverloadedStringsOverloadedStrings

Enable overloaded string literals.

GHCi, version 8.6.4: http://www.haskell.org/ghc/ :? for help

Loaded GHCi configuration from /home/andrew/git/dot-files/.ghci

λ> :t "Lambda"

"Lambda" :: [Char]

GHCi, version 8.6.4: http://www.haskell.org/ghc/ :? for help

Loaded GHCi configuration from /home/andrew/git/dot-files/.ghci

λ> :t "Lambda"

"Lambda" :: [Char]

λ> :set -XOverloadedStrings

λ> :t "Jam"

"Jam" :: Data.String.IsString p => p

class IsString a where

 fromString :: String -> a

class IsString a where

 fromString :: String -> a

instance IsString Text where

 fromString = pack

class IsString a where

 fromString :: String -> a

isGood :: Text -> Bool

instance IsString Text where

 fromString = pack

class IsString a where

 fromString :: String -> a

isGood "foo"

instance IsString Text where

 fromString = pack

isGood :: Text -> Bool

TupleSectionsTupleSections

Allow partially applied tuple constructors.

\x -> x * 2

(* 2)

\x -> x * 2

\x -> (x,True)

\x -> x * 2

(* 2)

(,True)

\x -> x * 2

(* 2)

\x -> (x,True)

(,True,,,"hi",)

(,True,,,"hi",) :: a -> b -> c -> d -> (a,Bool,b,c,String,d)

InstanceSigsInstanceSigs

Allow type signatures for definitions of instance members.

instance (Traversable f, Traversable g) => Traversable (Compose f g)

 traverse = undefined

instance (Traversable f, Traversable g) => Traversable (Compose f g)

 traverse :: (a -> h b) -> Compose f g a -> h (Compose f g b)

 traverse = undefined

 • Illegal type signature in instance declaration:

 traverse' :: (a -> h b) -> Compose f g a -> h (Compose f g b)

 (Use InstanceSigs to allow this)

 • In the instance declaration for ‘Traversable' (Compose f g)’

 |

25 | traverse' :: (a -> h b) -> Compose f g a -> h (Compose f g b)

 | ^^

LambdaCaseLambdaCase

Adds syntactic sugar for pattern matching on a function’s argument.

pretty ::

 -> Expr

 -> Text

pretty e = case e of

 LitI n -> pack $ show n

 LitB True -> "true"

 LitB False -> "false"

pretty ::

 -> Expr

 -> Text

pretty = \case

 LitI n -> pack $ show n

 LitB True -> "true"

 LitB False -> "false"

MultiWayIfMultiWayIf

Adds syntactic sugar for nested if-then-else expressions.

 if 1 < 0 then

 "foo"

 else if 12 > 4 then

 "bar"

 else if even 42 then

 "42"

 else

 "no idea"

 if | 1 < 0 -> "foo"

 | 12 > 4 -> "bar"

 | even 42 -> "42"

 | otherwise -> "no idea"

RECORDSRECORDS

RecordWildCardsRecordWildCards

Elide fields from record construction and pattern matching.

data Person =

 Person {

 firstName :: Text

 , surname :: Text

 , height :: Integer

 }

data Person =

 Person {

 firstName :: Text

 , surname :: Text

 , height :: Integer

 }

greetPerson ::

 Person

 -> Text

greetPerson Person{firstName = firstName, surname = surname, height = height} =

 undefined

data Person =

 Person {

 firstName :: Text

 , surname :: Text

 , height :: Integer

 }

Person{firstName = firstName, surname = surname, height = height}

greetPerson ::

 Person

 -> Text

greetPerson =

 undefined

{-# LANGUAGE RecordWildCards #-}

data Person =

 Person {

 firstName :: Text

 , surname :: Text

 , height :: Integer

 }

Person{firstName = firstName, surname = surname, height = height}

greetPerson ::

 Person

 -> Text

greetPerson =

 undefined

{-# LANGUAGE RecordWildCards #-}

data Person =

 Person {

 firstName :: Text

 , surname :: Text

 , height :: Integer

 }

Person{..}

greetPerson ::

 Person

 -> Text

greetPerson =

 undefined

{-# LANGUAGE RecordWildCards #-}

defaultPerson ::

 Person

defaultPerson =

 let

 firstName = "Andrew"

 surname = "McMiddlin"

 height = 185

 in

 Person {..}

{-# LANGUAGE DuplicateRecordFields #-}

{-# LANGUAGE RecordWildCards #-}

{-# LANGUAGE DuplicateRecordFields #-}

{-# LANGUAGE RecordWildCards #-}

data ConferenceAttendee =

 ConferenceAttendee {

 firstName :: Text

 , surname :: Text

 , height :: Integer

 , shirtSize :: ShirtSize

 }

{-# LANGUAGE DuplicateRecordFields #-}

{-# LANGUAGE RecordWildCards #-}

defaultConferenceAttendee ::

 Person

 -> ConferenceAttendee

defaultConferenceAttendee =

data ConferenceAttendee =

 ConferenceAttendee {

 firstName :: Text

 , surname :: Text

 , height :: Integer

 , shirtSize :: ShirtSize

 }

{-# LANGUAGE DuplicateRecordFields #-}

{-# LANGUAGE RecordWildCards #-}

 Person{..}

data ConferenceAttendee =

 ConferenceAttendee {

 firstName :: Text

 , surname :: Text

 , height :: Integer

 , shirtSize :: ShirtSize

 }

defaultConferenceAttendee ::

 Person

 -> ConferenceAttendee

defaultConferenceAttendee =

{-# LANGUAGE DuplicateRecordFields #-}

{-# LANGUAGE RecordWildCards #-}

 Person{..}

 ConferenceAttendee {shirtSize = M, ..}

data ConferenceAttendee =

 ConferenceAttendee {

 firstName :: Text

 , surname :: Text

 , height :: Integer

 , shirtSize :: ShirtSize

 }

defaultConferenceAttendee ::

 Person

 -> ConferenceAttendee

defaultConferenceAttendee =

Some problems with RecordWildCards

Some problems with RecordWildCards

Unclear where variables come from.

Some problems with RecordWildCards

Unclear where variables come from.
All fields are brought into scope.

Some problems with RecordWildCards

Unclear where variables come from.
All fields are brought into scope.
Vulnerable to changes in the record.

NamedFieldPunsNamedFieldPuns

Remove some of the boilerplate when bringing record fields into scope.

{-# LANGUAGE NamedFieldPuns #-}

greetPerson ::

 Person

 -> Text

greetPerson =

 undefined

{-# LANGUAGE NamedFieldPuns #-}

greetPerson ::

 Person

 -> Text

greetPerson Person{firstName, surname, height} =

 undefined

{-# LANGUAGE NamedFieldPuns #-}

greetPerson ::

 Person

 -> Text

greetPerson Person{firstName, surname} =

 undefined

HEAVYWEIGHTHEAVYWEIGHT

ScopedTypeVariablesScopedTypeVariables

Scope type variables to the lexical scope of the expression.

f ::

 [a] -> [a]

f xs =

 ys ++ ys

 where

 ys :: [a]

 ys = reverse xs

f ::

 [a] -> [a]

 ys :: [a]

f xs =

 ys ++ ys

 where

ys = reverse xs

Couldn't match type ‘a’ with ‘a1’

‘a’ is a rigid type variable bound by

 the type signature for:

 f :: forall a. [a] -> [a]

 at examples/ScopedTypeVariables.hs:(5,1)-(6,12)

‘a1’ is a rigid type variable bound by

 the type signature for:

 ys :: forall a1. [a1]

 at examples/ScopedTypeVariables.hs:10:5-13

Expected type: [a1]

 Actual type: [a]

 f :: forall a. [a] -> [a]

 ys :: forall a1. [a1]

Couldn't match type ‘a’ with ‘a1’

‘a’ is a rigid type variable bound by

 the type signature for:

at examples/ScopedTypeVariables.hs:(5,1)-(6,12)

‘a1’ is a rigid type variable bound by

 the type signature for:

at examples/ScopedTypeVariables.hs:10:5-13

Expected type: [a1]

 Actual type: [a]

f ::

 [a] -> [a]

f xs =

 ys ++ ys

 where

 ys :: [a]

 ys = reverse xs

{-# LANGUAGE ScopedTypeVariables #-}

f ::

 [a] -> [a]

f xs =

 ys ++ ys

 where

 ys :: [a]

 ys = reverse xs

{-# LANGUAGE ScopedTypeVariables #-}

f ::

 forall a.

 [a] -> [a]

f xs =

 ys ++ ys

 where

 ys :: [a]

 ys = reverse xs

GeneralisedNewtypeDerivingGeneralisedNewtypeDeriving

Derive instances for newtypes based on the type they wrap.

class Pretty a where

 pretty :: a -> Text

class Pretty a where

 pretty :: a -> Text

instance Pretty Int where

 pretty = pack . show

class Pretty a where

 pretty :: a -> Text

instance Pretty Int where

 pretty = pack . show

newtype Age = Age Int

class Pretty a where

 pretty :: a -> Text

instance Pretty Int where

 pretty = pack . show

newtype Age = Age Int

 deriving (Show, Pretty)

Can't make a derived instance of ‘Pretty Age’:

 ‘Pretty’ is not a stock derivable class (Eq, Show, etc.)

 Try GeneralizedNewtypeDeriving for GHC's newtype-deriving extension

class Coercible a b

class Coercible a b

coerce :: Coercible a b => a -> b

instance Pretty Int where

 pretty = pack . show

newtype Age = Age Int

 deriving (Show, Pretty)

{-# LANGUAGE GeneralisedNewtypeDeriving #-}

instance Pretty Int where

 pretty = pack . show

newtype Age = Age Int

 deriving (Show, Pretty)

{-# LANGUAGE GeneralisedNewtypeDeriving #-}

instance Pretty Int where

 pretty = pack . show

newtype Age = Age Int

 deriving (Show, Pretty)

instance Coercible Int Age

instance Coercible Age Int

{-# LANGUAGE GeneralisedNewtypeDeriving #-}

instance Pretty Int where

 pretty = pack . show

newtype Age = Age Int

 deriving (Show, Pretty)

instance Coercible Int Age

instance Coercible Age Int

instance Pretty Age where

 pretty = coerce $ pack . show

{-# LANGUAGE GeneralisedNewtypeDeriving #-}

instance Pretty Int where

 pretty = pack . show

newtype Age = Age Int

 deriving (Show, Pretty)

instance Coercible Int Age

instance Coercible Age Int

instance Pretty Age where

 pretty = coerce $ pack . show

instance Coercible a b => Coercible (a -> c) (b -> c)

ROLESROLES

ROLESROLES
GeneralisedNewtypeDeriving as it was originally implemented had some issues that
resulted in roles being added to the language.

ROLESROLES
GeneralisedNewtypeDeriving as it was originally implemented had some issues that
resulted in roles being added to the language.

As a result of the role system, adding join to the Monad class would stop
GeneralisedNewtypeDeriving from being able to derive Monad.

TYPE CLASSESTYPE CLASSES

TYPE CLASSES IN HASKELL 2010TYPE CLASSES IN HASKELL 2010

TYPE CLASSES IN HASKELL 2010TYPE CLASSES IN HASKELL 2010
 covers type classes.Section 4.3.1 of the standard

https://www.haskell.org/onlinereport/haskell2010/haskellch4.html#x10-750004.3

TYPE CLASSES IN HASKELL 2010TYPE CLASSES IN HASKELL 2010
 covers type classes.

To summarise, it says that a type class declaration must have the following form.

Section 4.3.1 of the standard

https://www.haskell.org/onlinereport/haskell2010/haskellch4.html#x10-750004.3

TYPE CLASSES IN HASKELL 2010TYPE CLASSES IN HASKELL 2010
 covers type classes.

To summarise, it says that a type class declaration must have the following form.

Section 4.3.1 of the standard

class cx => C u where cdecls

https://www.haskell.org/onlinereport/haskell2010/haskellch4.html#x10-750004.3

TYPE CLASSES IN HASKELL 2010TYPE CLASSES IN HASKELL 2010
 covers type classes.

To summarise, it says that a type class declaration must have the following form.

must have the class keyword;

Section 4.3.1 of the standard

class cx => C u where cdecls

https://www.haskell.org/onlinereport/haskell2010/haskellch4.html#x10-750004.3

TYPE CLASSES IN HASKELL 2010TYPE CLASSES IN HASKELL 2010
 covers type classes.

To summarise, it says that a type class declaration must have the following form.

must have the class keyword;
may have a context;

Section 4.3.1 of the standard

class cx => C u where cdecls

https://www.haskell.org/onlinereport/haskell2010/haskellch4.html#x10-750004.3

TYPE CLASSES IN HASKELL 2010TYPE CLASSES IN HASKELL 2010
 covers type classes.

To summarise, it says that a type class declaration must have the following form.

must have the class keyword;
may have a context;
must have a class name;

Section 4.3.1 of the standard

class cx => C u where cdecls

https://www.haskell.org/onlinereport/haskell2010/haskellch4.html#x10-750004.3

TYPE CLASSES IN HASKELL 2010TYPE CLASSES IN HASKELL 2010
 covers type classes.

To summarise, it says that a type class declaration must have the following form.

must have the class keyword;
may have a context;
must have a class name;
must be parameterised over exactly one type; and

Section 4.3.1 of the standard

class cx => C u where cdecls

https://www.haskell.org/onlinereport/haskell2010/haskellch4.html#x10-750004.3

TYPE CLASSES IN HASKELL 2010TYPE CLASSES IN HASKELL 2010
 covers type classes.

To summarise, it says that a type class declaration must have the following form.

must have the class keyword;
may have a context;
must have a class name;
must be parameterised over exactly one type; and
may declare one or more members.

Section 4.3.1 of the standard

class cx => C u where cdecls

https://www.haskell.org/onlinereport/haskell2010/haskellch4.html#x10-750004.3

class Show a where

 show :: a -> String

 ...

class Eq a => Ord a where

 compare :: a -> a -> Ordering

 ...

class Show a where

 show :: a -> String

 ...

class (Ord a, Show a) => ShOrd a

class Show a where

 show :: a -> String

 ...

class Eq a => Ord a where

 compare :: a -> a -> Ordering

 ...

TYPE CLASS INSTANCES IN HASKELL 2010TYPE CLASS INSTANCES IN HASKELL 2010

TYPE CLASS INSTANCES IN HASKELL 2010TYPE CLASS INSTANCES IN HASKELL 2010
 covers type class instance declarations.Section 4.3.2 of the standard

https://www.haskell.org/onlinereport/haskell2010/haskellch4.html#x10-750004.3

TYPE CLASS INSTANCES IN HASKELL 2010TYPE CLASS INSTANCES IN HASKELL 2010
 covers type class instance declarations.

In short, it says that a type class instance must have the following form.

Section 4.3.2 of the standard

https://www.haskell.org/onlinereport/haskell2010/haskellch4.html#x10-750004.3

TYPE CLASS INSTANCES IN HASKELL 2010TYPE CLASS INSTANCES IN HASKELL 2010
 covers type class instance declarations.

In short, it says that a type class instance must have the following form.

Section 4.3.2 of the standard

instance cx => C (T u1 … uk) where { d }

https://www.haskell.org/onlinereport/haskell2010/haskellch4.html#x10-750004.3

TYPE CLASS INSTANCES IN HASKELL 2010TYPE CLASS INSTANCES IN HASKELL 2010
 covers type class instance declarations.

In short, it says that a type class instance must have the following form.

must start with the instance keyword;

Section 4.3.2 of the standard

instance cx => C (T u1 … uk) where { d }

https://www.haskell.org/onlinereport/haskell2010/haskellch4.html#x10-750004.3

TYPE CLASS INSTANCES IN HASKELL 2010TYPE CLASS INSTANCES IN HASKELL 2010
 covers type class instance declarations.

In short, it says that a type class instance must have the following form.

must start with the instance keyword;
may have a context;

Section 4.3.2 of the standard

instance cx => C (T u1 … uk) where { d }

https://www.haskell.org/onlinereport/haskell2010/haskellch4.html#x10-750004.3

TYPE CLASS INSTANCES IN HASKELL 2010TYPE CLASS INSTANCES IN HASKELL 2010
 covers type class instance declarations.

In short, it says that a type class instance must have the following form.

must start with the instance keyword;
may have a context;
must mention the class name;

Section 4.3.2 of the standard

instance cx => C (T u1 … uk) where { d }

https://www.haskell.org/onlinereport/haskell2010/haskellch4.html#x10-750004.3

TYPE CLASS INSTANCES IN HASKELL 2010TYPE CLASS INSTANCES IN HASKELL 2010
 covers type class instance declarations.

In short, it says that a type class instance must have the following form.

must start with the instance keyword;
may have a context;
must mention the class name;
must mention the type the instance is for; and

Section 4.3.2 of the standard

instance cx => C (T u1 … uk) where { d }

https://www.haskell.org/onlinereport/haskell2010/haskellch4.html#x10-750004.3

TYPE CLASS INSTANCES IN HASKELL 2010TYPE CLASS INSTANCES IN HASKELL 2010
 covers type class instance declarations.

In short, it says that a type class instance must have the following form.

must start with the instance keyword;
may have a context;
must mention the class name;
must mention the type the instance is for; and
may contain definitions for the class’s members.

Section 4.3.2 of the standard

instance cx => C (T u1 … uk) where { d }

https://www.haskell.org/onlinereport/haskell2010/haskellch4.html#x10-750004.3

MultiParamTypeClassesMultiParamTypeClasses

Allows type classes with more than one type parameter.

class Monad m => MonadReader r m where

 ask :: m r

 ...

FlexibleInstancesFlexibleInstances

Relaxes the rules for valid type class instances.

Instance types can be type variables.

Instance types can be type variables.
Type variables can appear multiple times in the instance head.

Instance types can be type variables.
Type variables can appear multiple times in the instance head.
Concrete types may be used as parameters to instance types.

class Monad m => MonadReader r m where

 ask :: m r

instance MonadReader r ((->) r) where

 ask = id

class Monad m => MonadReader r m where

 ask :: m r

type-class-extensions.lhs:123:10-32: error:

 • Illegal instance declaration for ‘MonadReader r ((->) r)’

 (All instance types must be of the form (T a1 ... an)

 where a1 ... an are *distinct type variables*,

 and each type variable appears at most once in the instance head.

 Use FlexibleInstances if you want to disable this.)

 • In the instance declaration for ‘MonadReader r ((->) r)’

 |

123 | instance MonadReader r ((->) r) where

 (All instance types must be of the form (T a1 ... an)

 where a1 ... an are *distinct type variables*

each type variable appears at most once in the instance head.

 Use FlexibleInstances if you want to disable this.

type-class-extensions.lhs:123:10-32: error:

 • Illegal instance declaration for ‘MonadReader r ((->) r)’

,

 and

)

 • In the instance declaration for ‘MonadReader r ((->) r)’

 |

123 | instance MonadReader r ((->) r) where

 (All instance types must be of the form (T a1 ... an)

 where a1 ... an are *distinct type variables*

each type variable appears at most once in the instance head.

 Use FlexibleInstances if you want to disable this.

type-class-extensions.lhs:123:10-32: error:

 • Illegal instance declaration for ‘MonadReader r ((->) r)’

,

 and

)

 • In the instance declaration for ‘MonadReader r ((->) r)’

 |

123 | instance MonadReader r ((->) r) where

 (All instance types must be of the form (T a1 ... an)

 where a1 ... an are *distinct type variables*

each type variable appears at most once in the instance head.

 Use FlexibleInstances if you want to disable this.

type-class-extensions.lhs:123:10-32: error:

 • Illegal instance declaration for ‘MonadReader r ((->) r)’

,

 and

)

 • In the instance declaration for ‘MonadReader r ((->) r)’

 |

123 | instance MonadReader r ((->) r) where

class Twizzle a where

 twizzle :: a -> Int

instance Twizzle (Maybe Integer) where

 twizzle = maybe 42 fromInteger

$ ghc --version

The Glorious Glasgow Haskell Compilation System, version 8.4.4

$ ghc -Wall -fforce-recomp Main.hs -o whoopsie

$ ghc --version

The Glorious Glasgow Haskell Compilation System, version 8.4.4

[1 of 4] Compiling FIA (FIA.hs, FIA.o)

[2 of 4] Compiling FIB (FIB.hs, FIB.o)

[3 of 4] Compiling FIC (FIC.hs, FIC.o)

[4 of 4] Compiling Main (Main.hs, Main.o)

Linking whoopsie ...

$ ghc --version

The Glorious Glasgow Haskell Compilation System, version 8.4.4

$ ghc -Wall -fforce-recomp Main.hs -o whoopsie

> ./whoopsie

fromList [Whoopsie A1 B C,Whoopsie A2 B C,Whoopsie A1 B C]

$ ghc --version

The Glorious Glasgow Haskell Compilation System, version 8.4.4

$ ghc -Wall -fforce-recomp Main.hs -o whoopsie

[1 of 4] Compiling FIA (FIA.hs, FIA.o)

[2 of 4] Compiling FIB (FIB.hs, FIB.o)

[3 of 4] Compiling FIC (FIC.hs, FIC.o)

[4 of 4] Compiling Main (Main.hs, Main.o)

Linking whoopsie ...

Whoopsie A1 B C Whoopsie A1 B C

$ ghc --version

The Glorious Glasgow Haskell Compilation System, version 8.4.4

$ ghc -Wall -fforce-recomp Main.hs -o whoopsie

[1 of 4] Compiling FIA (FIA.hs, FIA.o)

[2 of 4] Compiling FIB (FIB.hs, FIB.o)

[3 of 4] Compiling FIC (FIC.hs, FIC.o)

[4 of 4] Compiling Main (Main.hs, Main.o)

Linking whoopsie ...

> ./whoopsie

fromList [,Whoopsie A2 B C,]

FlexibleContextsFlexibleContexts

Relax some of the requirements regarding contexts.

updateThing ::

 MonadState MyState m

 => m ()

updateThing ::

 (HasThing s

 , MonadState s m

)

 => m ()

FunctionalDependenciesFunctionalDependencies

Express dependent relationships between type variables for type classes with multiple
parameters.

{-# LANGUAGE FlexibleInstances #-}

{-# LANGUAGE MultiParamTypeClasses #-}

class Monad m => MonadReader r m where

 ask :: m r

instance MonadReader r ((->) r) where

 ask = id

{-# LANGUAGE FlexibleInstances #-}

{-# LANGUAGE MultiParamTypeClasses #-}

class Monad m => MonadReader r m where

 ask :: m r

foo ::

 Integer

foo =

 (+ 1) <$> ask $ 41

{-# LANGUAGE FlexibleInstances #-}

{-# LANGUAGE MultiParamTypeClasses #-}

class Monad m => MonadReader r m where

 ask :: m r

instance MonadReader r ((->) r) where

 ask = id

type-class-extensions.lhs:275:13-16: error:

 • Ambiguous type variable ‘t0’ arising from a use of ‘ask’

 prevents the constraint ‘(MonadReader

 Integer ((->) t0))’ from being solved.

 Probable fix: use a type annotation to specify what ‘t0’ should be.

 These potential instance exist:

 one instance involving out-of-scope types

 (use -fprint-potential-instances to see them all)

 • In the second argument of ‘(<$>)’, namely ‘ask’

 In the expression: (+ 1) <$> ask

 In the expression: (+ 1) <$> ask $ 100

 |

275 | (+ 1) <$> ask $ 41

 | ^^^

Ambiguous type variable ‘t0’ arising from a use of ‘ask’

 prevents the constraint ‘(MonadReader

 Integer ((->) t0))’ from being solved.

 |

275 | (+ 1) <$> ask $ 41

 | ^^^

type-class-extensions.lhs:275:13-16: error:

 •

Probable fix: use a type annotation to specify what ‘t0’ should be.

 These potential instance exist:

 one instance involving out-of-scope types

 (use -fprint-potential-instances to see them all)

 • In the second argument of ‘(<$>)’, namely ‘ask’

 In the expression: (+ 1) <$> ask

 In the expression: (+ 1) <$> ask $ 100

{-# LANGUAGE FlexibleInstances #-}

{-# LANGUAGE MultiParamTypeClasses #-}

{-# LANGUAGE FunctionalDependencies #-}

{-# LANGUAGE FlexibleInstances #-}

{-# LANGUAGE MultiParamTypeClasses #-}

{-# LANGUAGE FunctionalDependencies #-}

class Monad m => MonadReader r m | m -> r where

 ask :: m r

{-# LANGUAGE FlexibleInstances #-}

{-# LANGUAGE MultiParamTypeClasses #-}

{-# LANGUAGE FunctionalDependencies #-}

 | m -> r

class Monad m => MonadReader r m where

 ask :: m r

{-# LANGUAGE FlexibleInstances #-}

{-# LANGUAGE MultiParamTypeClasses #-}

{-# LANGUAGE FunctionalDependencies #-}

 | m -> r

instance MonadReader r ((->) r) where

 ask = id

class Monad m => MonadReader r m where

 ask :: m r

{-# LANGUAGE FlexibleInstances #-}

{-# LANGUAGE MultiParamTypeClasses #-}

{-# LANGUAGE FunctionalDependencies #-}

 | m -> r

foo ::

 Integer

foo =

 (+ 1) <$> ask $ 41

class Monad m => MonadReader r m where

 ask :: m r

instance MonadReader r ((->) r) where

 ask = id

CONCLUSIONCONCLUSION

Haskell 2010 is smaller than you think.

Haskell 2010 is smaller than you think.
GHC defines many extensions to the language.

Haskell 2010 is smaller than you think.
GHC defines many extensions to the language.
Language extensions come with tradeoffs.

REFERENCESREFERENCES

GHC language extensions

Haskell 2010 report

24 Days of GHC extensions

Putting join in Monad

FlexibleInstances breaking Data.Set

https://downloads.haskell.org/~ghc/latest/docs/html/users_guide/glasgow_exts.html

https://www.haskell.org/onlinereport/haskell2010/haskellch12.html#x19-19100012.3

https://ocharles.org.uk/pages/2014-12-01-24-days-of-ghc-extensions.html

https://ryanglscott.github.io/2018/03/04/how-quantifiedconstraints-can-let-us-put-join-
back-in-monad/

https://gist.github.com/rwbarton/dd8e51dce2a262d17a80

https://downloads.haskell.org/~ghc/latest/docs/html/users_guide/glasgow_exts.html
https://www.haskell.org/onlinereport/haskell2010/haskellch12.html#x19-19100012.3
https://ocharles.org.uk/pages/2014-12-01-24-days-of-ghc-extensions.html
https://ryanglscott.github.io/2018/03/04/how-quantifiedconstraints-can-let-us-put-join-back-in-monad/
https://gist.github.com/rwbarton/dd8e51dce2a262d17a80

IMAGESIMAGES
Muhammad Ali

Records

https://commons.wikimedia.org/wiki/File:Muhammad_Ali_1966.jpg

https://flic.kr/p/8fsrnG

https://commons.wikimedia.org/wiki/File:Muhammad_Ali_1966.jpg
https://flic.kr/p/8fsrnG

